Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients

نویسندگان

  • Xiaofeng Zong
  • Fuke Wu
  • Chengming Huang
چکیده

Keywords: Stochastic differential delay equation (SDDE) Split-step theta scheme Stochastic linear theta scheme Strong convergence rate Exponential mean square stability a b s t r a c t This paper establishes the boundedness, convergence and stability of the two classes of theta schemes, namely split-step theta (SST) scheme and stochastic linear theta (SLT) scheme, for stochastic differential delay equations (SDDEs) with non-globally Lipschitz continuous coefficients. When the drift f (x, y) satisfies one-sided Lipschitz condition with respect to the present state x and the diffusion g(x, y) obeys the global Lipschitz condition with respect to the present term x, but the delay terms y in the drift and diffusion may be highly nonlinear, this paper first examines the strong convergence rates of the theta schemes for SDDEs. It is also proved that the two classes of theta schemes for θ ∈ (1/2, 1] converge strongly to the exact solution with the order 1/2 but for θ ∈ [0, 1/2] the linear growth condition on drift f (x, y) in x is needed for the strong convergence rates. The exponential mean square stability of the theta schemes with θ ∈ (1/2, 1] is also investigated for highly nonlinear SDDEs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and nonLipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examin...

متن کامل

A note on tamed Euler approximations

Strong convergence results on tamed Euler schemes, which approximate stochastic differential equations with superlinearly growing drift coefficients that are locally one-sided Lipschitz continuous, are presented in this article. The diffusion coefficients are assumed to be locally Lipschitz continuous and have at most linear growth. Furthermore, the classical rate of convergence, i.e. one–half,...

متن کامل

Non-globally Lipschitz Counterexamples for the stochastic Euler scheme

The stochastic Euler scheme is known to converge to the exact solution of a stochastic differential equation with globally Lipschitz coefficients and even with coefficients which grow at most linearly. For super-linearly growing coefficients convergence in the strong and numerically weak sense remained an open question. In this article we prove for many stochastic differential equations with su...

متن کامل

Convergence of the Stochastic Euler Scheme for Locally Lipschitz Coefficients

Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. The important case of superlinearly growing coefficients, however, remained an open question for a long time now. The main difficulty is that numerically weak conv...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 278  شماره 

صفحات  -

تاریخ انتشار 2015